产品展示
zxzx
您现在的位置:首页 > 产品展示

九项PCB失效分析的技术总结
2022-04-30 17:32:43       来源:乐鱼官网

  已经成为的最重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。但是由于成本和技术的原因,PCB 在生产和应用过程中出现了大量的失效问题。

  对于这种失效问题,我们应该用到一些常用的失效分析技术,来使得 PCB在制造的时候质量和可靠性水平得到一定的保证,为此笔者为大家重点总结了九项用于 PCB 失效分析的技术,包括:外观检查、X 射线透视检查、金相切片分析、热分析、光电子能谱分析、显微红外分析、扫描电镜分析以及 X 射线能谱分析等。

  那么就要用到一些常用的失效分析技术。介于 PCB 的结构特点与失效的主要模式,其中金相切片分析是属于破坏性的分析技术,一旦使用了这两种技术,样品就破坏了,且没办法恢复;另外由于制样的要求,可能扫描电镜分析和 X 射线能谱分析有时也需要部分破坏样品。此外,在分析的过程中可能还会由于失效定位和失效原因的验证的需要,在大多数情况下要使用如热应力、电性能、可焊性测试与尺寸测量等方面的试验技术,这里就不专门介绍了。

  1.外观检查。外观检查就是目测或利用一些简单仪器,如立体显微镜、金相显微镜甚至放大镜等工具检查 PCB 的外观,寻找失效的部位和相关的物证,主要的作用就是失效定位和初步判断 PCB 的失效模式。外观检查主要检查 PCB 的污染、腐蚀、爆板的位置、电路布线以及失效的规律性、如是批次的或是个别,是不是总是集中在某个区域等等。另外,有许多 PCB 的失效是在组装成 PCBA 后才发现,是不是组装工艺过程以及过程所用材料的影响导致的失效也需要仔细检查失效区域的特征。

  2.X 射线透视检查。对某些不能通过外观检查到的部位以及 PCB 的通孔内部和其他内部缺陷,只好使用 X 射线透视系统来检查。X 光透视系统是利用不同材料厚度或是不同材料密度对 X 光的吸湿或透过率的不同原理来成像。该技术更多地用来检查 PCBA 焊点内部的缺陷、通孔内部缺陷和高密度封装的 BGA 或 CSP器件的缺陷焊点的定位。目前的工业X 光透视设备的分辨率可以达到一个微米以下,并正由二维向三维成像的设备转变,甚至已经有五维(5D)的设备用于封装的检查,但是这种 5D 的 X 光透视系统非常贵重,很少在工业界有实际的应用。

  3.切片分析切片分析。就是通过取样、镶嵌、切片、抛磨、腐蚀、观察等一系列手段和步骤获得 PCB 横截面结构的过程。通过切片分析可以得到反映 PCB(通孔、镀层等)质量的微观结构的丰富信息,为下一步的质量改进提供很好的依据。但是该方法是破坏性的,一旦进行了切片,样品就必然遭到破坏;同时该方法制样要求高,制样耗时也较长,需要训练有素的技术人员来完成。要求详细的切片作业过程,可以参考 IPC 的标准 IPC-TM-650 2.1.1 和 IPC-MS-810 规定的流程进行。

  4.扫描声学显微镜。目前用于电子封装或组装分析的主要是 C 模式的超声扫描声学显微镜,它是利用高频超声波在材料不连续界面上反射产生的振幅及位相与极性变化来成像,其扫描方式是沿着 Z 轴扫描 X-Y 平面的信息。因此,扫描声学显微镜可以用来检测元器件、材料以及 PCB 与 PCBA 内部的各种缺陷,包括裂纹、分层、夹杂物以及空洞等。如果扫描声学的频率宽度足够的话,还可以直接检测到焊点的内部缺陷。典型的扫描声学的图像是以红色的警示色表示缺陷的存在,由于大量塑料封装的元器件使用在 SMT 工艺中,由有铅转换成无铅工艺的过程中,大量的潮湿回流敏感问题产生,即吸湿的塑封器件会在更高的无铅工艺温度下回流时出现内部或基板分层开裂现象,在无铅工艺的高温下普通的 PCB 也会常常出现爆板现象。此时,扫描声学显微镜就凸现其在多层高密度 PCB 无损探伤

  5.显微红外分析。显微红外分析就是将红外光谱与显微镜结合在一起的分析方法,它利用不一样材料(主要是有机物)对红外光谱不同吸收的原理,分析材料的化合物成分,再结合显微镜可使可见光与红外光同光路,只要在可见的视场下,就可以寻找要分析微量的有机污染物。如果没有显微镜的结合,通常红外光谱只能分析样品量较多的样品。而电子工艺中很多情况是微量污染就可以导致 PCB焊盘或引线脚的可焊性不良,可以想象,没有显微镜配套的红外光谱是很难解决工艺问题的。显微红外分析的主要用途就是分析被焊面或焊点表面的有机污染物,分析腐蚀或可焊性不良的原因。

  6.扫描电子显微镜。分析扫描电子显微镜(SEM)是进行失效分析的一种最有用的大型电子显微成像系统,其工作原理是利用阴极发射的电子束经阳极加速,由磁透镜聚焦后形成一束直径为几十至几千埃(A)的电子束流,在扫描线圈的偏转作用下,电子束以一定时间和空间顺序在试样表面作逐点式扫描运动,这束高能电子束轰击到样品表面上会激发出多种信息,经过收集放大就能从显示屏上得到各种相应的图形。激发的二次电子产生于样品表面 5~10nm 范围内,因而,二次电子能够较好的反映样品表面的形貌,所以最常用作形貌观察;而激发的背散射电子则产生于样品表面 100~1000nm 范围内,随着物质原子序数的不同而发射不同特征的背散射电子,因此背散射电子图象具有形貌特征和原子序数判别的能力,也因此,背散射电子像可反映化学元素成分的分布。现时的扫描电子显微镜的功能已经很强大,任何精细结构或表面特征均可放大到几十万倍进行观察与分析。

  在 PCB 或焊点的失效分析方面,SEM 主要用来作失效机理的分析,具体说来就是用来观察焊盘表面的形貌结构、焊点金相组织、测量金属间化物、可焊性镀层分析以及做锡须分析测量等。与光学显微镜不同,扫描电镜所成的是电子像,因此只有黑白两色,并且扫描电镜的试样要求导电,对非导体和部分半导体需要喷金或碳处理,否则电荷聚集在样品表面就影响样品的观察。此外,扫描电镜图像景深远远大于光学显微镜,是针对金相结构、显微断口以及锡须等不平整样品的重要分析方法。

  7.X 射线能谱分析。上面所说的扫描电镜一般都配有 X 射线能谱仪。当高能的电子束撞击样品表面时,表面物质的原子中的内层电子被轰击逸出,外层电子向低能级跃迁时就会激发出特征 X 射线,不同元素的原子能级差不同而发出的特征X 射线就不同,因此,可以将样品发出的特征 X 射线作为化学成分分析。同时按照检测 X 射线的信号为特征波长或特征能量又将相应的仪器分别叫波谱分散谱仪(简称波谱仪,WDS)和能量分散谱仪(简称能谱仪,EDS),波谱仪的分辨率比能谱仪高,能谱仪的分析速度比波谱仪快。由于能谱仪的速度快且成本低,所以一般的扫描电镜配置的都是能谱仪。

  随着电子束的扫描方式不同,能谱仪可以进行表面的点分析、线分析和面分析,可得到元素不同分布的信息。点分析得到一点的所有元素;线分析每次对指定的一条线做一种元素分析,多次扫描得到所有元素的线分布;面分析对一个指定面内的所有元素分析,测得元素含量是测量面范围的平均值。

  在 PCB 的分析上,能谱仪主要用于焊盘表面的成分分析,可焊性不良的焊盘与引线脚表面污染物的元素分析。能谱仪的定量分析的准确度有限,低于 0.1%的含量一般不易检出。能谱与 SEM 结合使用可以同时获得表面形貌与成分的信息,这是它们应用广泛的原因所在。

  8.光电子能谱(XPS)。样品受 X 射线照射时,表面原子的内壳层电子会脱离原子核的束缚而逸出固体表面形成电子,测量其动能 Ex,可得到原子的内壳层电子的结合能 Eb,Eb 因不同元素和不同电子壳层而异,它是原子的“指纹”标识参数,形成的谱线即为光电子能谱(XPS)。XPS 可拿来进行样品表面浅表面(几个纳米级)元素的定性和定量分析。此外,还可根据结合能的化学位移获得有关元素化学价态的信息。能给出表面层原子价态与周围元素键合等信息;入射束为X 射线光子束,因此可进行绝缘样品分析,不损伤被分析样品快速多元素分析;

  还可以在氩离子剥离的情况下对多层进行纵向的元素分布分析(可参见后面的案例),且灵敏度远比能谱(EDS)高。XPS 在 PCB 的分析方面大多数都用在焊盘镀层质量的分析、污染物分析和氧化程度的分析,以确定可焊性不良的深层次原因。

  9.热分析。差示扫描量热法(Differential Scanning Calorim- etry):在程序控温下,测量输入到物质与参比物质之间的功率差与温度(或时间)关系的一种方法。DSC 在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差 Δ T 时,可通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,而使两边热量平衡,温差 Δ T 消失,并记录试样和参比物下两只电热补偿的热功率之差随温度(或时间)的变化关系,根据这种变化关系,可研究分析材料的物理化学及热力学性能。DSC 的应用广泛,但在 PCB 的分析方面大多数都用在测量PCB 上所用的各种高分子材料的固化程度(例如图 2)、玻璃态转化温度,这两个参数决定着 PCB 在后续工艺过程中的可靠性。

  热机械分析仪 (TMA):热机械分析技术(Thermal Mechanical Analysis)用于程序控温下,测量固体、液体和凝胶在热或机械力作用下的形变性能,常用的负荷方式有压缩、针入、拉伸、弯曲等。测试探头由固定在其上面的悬臂梁和螺旋弹簧支撑,通过马达对试样施加载荷,当试样发生形变时,差动变压器检测到此变化,并连同温度、应力和应变等数据进行处理后可得到物质在可忽略负荷下形变与温度(或时间)的关系。根据形变与温度(或时间)的关系,可研究分析材料的物理化学及热力学性能。TMA 的应用广泛,在 PCB 的分析方面大多数都用在PCB 最关键的两个参数:测量其线性线胀系数和玻璃态转化温度。线胀系数过大的基材的 PCB 在焊接组装后常常会导致金属化孔的断裂失效。

  由于 PCB 高密度的发展的新趋势以及无铅与无卤的环保要求,慢慢的变多的 PCB出现了润湿不良、爆板、分层、CAF 等等各种失效问题。介绍这些分析技术在实际案例中的应用。PCB 失效机理与原因的获得将有利于将来对 PCB 的质量控制,从而避免类似问题的再度发生。

  声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。举报投诉

  的发展,各种芯片被大范围的应用于各种工业生产和家庭电器中。然而,在使用的过程中,芯片的

  为一定的电信号,为电子器件的工作提供基本功能。因此,保障半导体的可靠性也显得很重要,其中半导体

  (FA)是一门发展中的新兴学科,近年开始从军工向普通企业普及。它一般根据

  。在缺乏复杂功能测试设备和测试程序的情况下,有可能用简单的连接性测试和参数测试办法来进行电测,结合物理

  已经成为电子信息产品的最重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。但是由于成本以及

  新人快速成长?关键是让ta去了解行业。而了解行业的其中一个捷径就是了解一个行业的口头术语。在半导体行业,就有“空封六

  案例背景 Case background 某产品的端子在PCBA组装完成后约24小时,端子轻微受力后发生掉落,经

  焊点PAD上无明显锡膏(Sn)附着,未发现异常元素, C元素约占30%(助焊剂主要成分之一)。 3.断面金相

  显示,未润湿位置具有表面合金化的典型特征,即IMC层。 4.断面SEM

  不同种类的金属材料和结构件,在载荷、温度、介质等力学及外因作用下,经常以磨损、腐蚀、断裂、变形等方式

  对提高LED产品的可靠性有很重要的意义,在产品的研发、生产、使用中都需要引入

  对提高LED产品的可靠性具有很重要的意义,在产品的研发、生产、使用中都需要引入

  的质量控制,从而避免类似问题的再度发生。   金鉴LED品质实验室专门提供

  原因慢慢的变多,在以前看起来难以发现的问题,现在可以用扫描电子显微镜与能谱(SEM&EDS)

  的专业群体服务。IPFA的会议进程包括各种讲座及各种专题讨论会,另外一

  案例资料下载的电子资料下载,更有其他相关的电路图、源代码、课件教程、中文资料、英文资料、参考设计、用户指南、解决方案等资料,希望有机会能够帮助到广大的电子工程师们。

  板经历无铅回流焊 IR、波峰焊接、以及一些手工焊或是返修等高温制程的冲击下,发生内层互联

  板已进行了组装,因而会产生极大的品质风险。 下面简要从钻孔质量和除胶过程这两个方面,阐述 ICD

  外观检查就是目测或利用一些简单仪器,如立体显微镜、金相显微镜甚至放大镜等工具检查

  呢,简单来说MOSFET在电源板上由于母线电压、变压器反射电压、漏感尖峰电压等等系统电压叠加在MOSFET漏源之间,导致的一种

  机理与原因的获得将有利于将来对PCBA的质量控制以避免类似问题的再度发生。

  的影响等,为确定产品的改进措施进行系统的调查研究工作,是可靠性设计的重要组成部分。

上一篇:景旺电子:PCB领头羊 成本管控能力卓越
下一篇:研究陈述丨容、感、阻被迫元器件商场陈述

 关于我们

 新闻动态

 资质荣誉

 联系我们

 网站地图